104 research outputs found

    Contribution of an accurate growth rate reconstruction of a stalagmite from the Kanaan Cave-Lebanon to the understanding of humidity variations in the Levant during the MIS 5

    Get PDF
    Lying at the transition between temperate Mediterranean domain and subtropical deserts, the Levant is a key area to study the palaeoclimatic response over glacial-interglacial cycles. This paper presents a dated last interglacial (MIS 5) stalagmite (129–84 ka) from the Kanaan Cave, Lebanon. Variations in growth rate, morphology and petrology have been measured to derive a palaeoclimatic record. The speleothem growth curve shows rapid growth rates during the peak of MIS 5e (126-124 ka), moderate growth rates between 103.5 and 99 ka and very low growth rates from 99 to 84 ka. On the basis of the good correlation between the speleothem morphology and growth rates with the isotopic response of continental records from northern and southern Levant, we relate high growth rate to wet conditions during the maximum MIS 5e and MIS 5c. The peak in growth rates corresponds to sapropel events in the eastern Mediterranean. Low growth rates during MIS 5d and 5b indicate a transition to drier conditions

    Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium : indications for climate-driven changes during the last 400 years

    Get PDF
    Fast-growing speleothems allow for the reconstruction of palaeoclimate down to a seasonal scale. Additionally, annual lamination in some of these speleothems yields highly accurate age models for these palaeoclimate records, making these speleothems valuable archives for terrestrial climate. In this study, an annually laminated stalagmite from the Han-sur-Lesse cave (Belgium) is used to study the expression of the seasonal cycle in northwestern Europe during the Little Ice Age. More specifically, two historical 12-year-long growth periods (ca. 1593-1605 CE and 1635-1646 CE) and one modern growth period (1960-2010 CE) are analysed on a sub-annual scale for their stable-isotope ratios (delta C-13 and delta O-18) and trace-element (Mg, Sr, Ba, Zn, Y, Pb, U) contents. Seasonal variability in these proxies is confirmed with frequency analysis. Zn, Y and Pb show distinct annual peaks in all three investigated periods related to annual flushing of the soil during winter. A strong seasonal in-phase relationship between Mg, Sr and Ba in the modern growth period reflects a substantial influence of enhanced prior calcite precipitation (PCP). In particular, PCP occurs during summers when recharge of the epikarst is low. This is also evidenced by earlier observations of increased delta C-13 values during summer. In the 17th century intervals, there is a distinct antiphase relationship between Mg, Sr and Ba, suggesting that processes other than PCP, i.e. varying degrees of incongruent dissolution of dolomite, eventually related to changes in soil activity and/or land-use change are more dominant. The processes controlling seasonal variations in Mg, Sr and Ba in the speleothem appear to change between the 17th century and 1960-2010 CE. The Zn, Y, Pb, and U concentration profiles; stable-isotope ratios; and morphology of the speleothem laminae all point towards increased seasonal amplitude in cave hydrology. Higher seasonal peaks in soil-derived elements (e.g. Zn and Y) and lower concentrations of host-rock-derived elements (e.g. Mg, Sr, Ba) point towards lower residence times in the epikarst and higher flushing rates during the 17th century. These observations reflect an increase in water excess above the cave and recharge of the epikarst, due to a combination of lower summer temperatures and increased winter precipitation during the 17th century. This study indicates that the transfer function controlling Mg, Sr and Ba seasonal variability varies over time. Which process is dominant - either PCP, soil activity or dolomite dissolution - is clearly climate driven and can itself be used as a palaeoenvironment proxy

    Bruniquel – Grotte

    Get PDF
    Rappels En 2015, une seconde opération programmée a été menée dans la grotte de Bruniquel qui, rappelons-le, a été découverte en 1990 par un spéléologue, B. Kowalczelski (société spéléo-archéologique de Caussade, SSAC). Après expertise de la cavité et de son potentiel paléontologique et archéologique par F. Rouzaud qui confirma l’existence – loin de l’entrée – d’étranges structures agencées avec des concrétions, deux autorisations ont été délivrées en 1992 et 1993 au nom de l’un d’entre nous ..

    Caves and global change Carbon dioxide, temperature and vegetation rise

    Full text link
    peer reviewedIn several Belgian caves, the CO2 air content is rising for eight years at least and probably much more. We think it is related to the present-day vigorous increase of vegetation, particularly trees. The CO2 measured in caves is an organic gas displaying the same δ 13C as the surrounding soil CO2. This evolution results from the present climate change.Karst et réchauffement climatique. Augmentation du dioxyde de carbone, de la température et de la végétation. Dans plusieurs grottes de Belgique, la teneur en CO2 de l'air est en augmentation constante depuis au moins huit ans et très probablement beaucoup plus. Nous pensons que cela est relié au développement actuel vigoureux de la végétation, et en particulier de la végétation arborescente. Le CO2 que nous dosons dans les grottes est en effet un gaz d'origine organique : il a le même δ 13C que le celui du sol environnant. Ceci nous paraît en relation avec le changement climatique

    Trace-element imaging at macroscopic scale in a Belgian sphalerite-galena ore using Laser-Induced Breakdown Spectroscopy (LIBS)

    Full text link
    Laser-Induced Breakdown Spectroscopy (LIBS) is a fast in-situ analytical technique based on spectroscopic analysis of atomic emission in laser-induced plasmas. Geochemical mapping at macroscopic scale using LIBS was applied to a decimetric Zn-Pb ore sample from east Belgium, which consists of alternating sphalerite and galena bands. A range of elements was detected with no or minimal spectral correction, including elements of interest for beneficiation such as Ge, Ag and Ga (although the detection of gallium could not be confirmed), and remediation, especially As and Tl. The comparison between LIBS and Energy Dispersive Spectroscopy (EDS) analyses showed that LIBS intensities reliably relate to elemental concentration although differences in spot size and detection limits exist between both techniques. The elemental images of minor and trace elements (Fe, Cu, Ag, Cd, Sb, As, Tl, Ge, Ni and Ba) obtained with LIBS revealed with great detail the compositional heterogeneity of the ore, including growth zones that were not visible on the specimen. In addition, each mineral generation has a distinct trace-element composition, reflecting a geochemical sequence whose potential metallogenic significance at the district scale should be addressed in further work. Although qualitative and preliminary, the obtained LIBS dataset already produced a wealth of information that allowed to initiate discussion on some genetical and crystallochemical aspects. Above all, LIBS appears as a powerful tool for screening geochemically large samples for the selection of zones of particular interest for further analysis.LIBS Scree

    Serum biomarkers identify critically ill traumatic brain injury patients for MRI

    Get PDF

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations
    corecore